2,906 research outputs found

    Automatically assembling a full census of an academic field

    Get PDF
    The composition of the scientific workforce shapes the direction of scientific research, directly through the selection of questions to investigate, and indirectly through its influence on the training of future scientists. In most fields, however, complete census information is difficult to obtain, complicating efforts to study workforce dynamics and the effects of policy. This is particularly true in computer science, which lacks a single, all-encompassing directory or professional organization. A full census of computer science would serve many purposes, not the least of which is a better understanding of the trends and causes of unequal representation in computing. Previous academic census efforts have relied on narrow or biased samples, or on professional society membership rolls. A full census can be constructed directly from online departmental faculty directories, but doing so by hand is prohibitively expensive and time-consuming. Here, we introduce a topical web crawler for automating the collection of faculty information from web-based department rosters, and demonstrate the resulting system on the 205 PhD-granting computer science departments in the U.S. and Canada. This method constructs a complete census of the field within a few minutes, and achieves over 99% precision and recall. We conclude by comparing the resulting 2017 census to a hand-curated 2011 census to quantify turnover and retention in computer science, in general and for female faculty in particular, demonstrating the types of analysis made possible by automated census construction.Comment: 11 pages, 6 figures, 2 table

    Generation Z, Learning Preferences, and Technology: An Academic Technology Framework Based on Enterprise Architecture

    Get PDF
    This work provides an overview of Generation X, Y (Millennials), and Z and their characteristics in academia. We present the ways that mobile technology is infused into their lifestyle. We reference how Generation Y and Z in particular expect technology to be integrated into their educational experience, as well as how it helps faculty to facilitate both synchronous and asynchronous learning. Furthermore, an overview is provided of how technology currently contributes to learning and provides a framework for how educators can better engage current students. The conceptual academic technology framework (ATF) put forth in this work will provide an immediate impact in several key areas. This framework enhances structure during course design, which may be based directly on learning outcomes and department/school objectives. It will also directly improve consistency in faculty/student communication by closely monitoring how changes in communication methods have evolved. Finally, we describe how to integrate technology in a meaningful way, in a manner that does not distract students while preparing them for careers in business

    COMMUNITY AND NETWORK RESPONSES FOR ASSISTING MOBILE VULNERABLE POPULATIONS

    Get PDF
    The COVID-19 crisis highlighted the increasing vulnerability of individuals, households, and communities. It has almost certainly been even more devastating for those who rely on community networks and organizations for aid but are less able to access aid networks in conditions of reduced mobility. This is the case for “mobile vulnerable populations,” among which include persons experiencing homelessness, victims of human trafficking,immigrants, refugees, and Latinos/as. This report summarizes our research with local Omaha service providers about what they need to serve mobile vulnerable populations in the community, how the pandemic has affected their ability to do so, and whether there have been any substantial and/or institutionalized partnerships between UNO/UNMC and these community organizations. In our research, we used a multi-method approach consisting of a survey of community organization leaders and interviews with organization workers engaged into day-to-day service provision to meet the needs of their clients. Our findingscan be summarized in four main themes: (a) organizations were already under-resourced prior to the pandemic; (b) the impact of the COVID-19 pandemic on organizations was substantial; (c) organizations described similar strengths and innovative responses to the pandemic; and (d) there is a lack of institutionalized collaboration with UNO/UNMC. We argue that building connections between UNO/UNMC and community organizations, as well as assisting in the development of networks among various organizations, is central to the mission of the University of Nebraska system and could benefitthe community more broadly. Concluding, we present four main recommendations: (1) more connections are needed between UNO/UNMC and agencies in the Omaha area; (2) it is likely that there are existing relationships between agency partners and UNO/UNMC faculty, staff and students that could be leveraged; (3) there is an opportunity to prepare students and emphasize workforce growth among providers; and (4) the important work of serving mobile vulnerable populations can be rewarding but also challenging for Omaha providers

    Land system science and sustainable development of the earth system: A global land project perspective

    Get PDF
    Land systems are the result of human interactions with the natural environment. Understanding the drivers, state, trends and impacts of different land systems on social and natural processes helps to reveal how changes in the land system affect the functioning of the socio-ecological system as a whole and the tradeoff these changes may represent. The Global Land Project has led advances by synthesizing land systems research across different scales and providing concepts to further understand the feedbacks between social-and environmental systems, between urban and rural environments and between distant world regions. Land system science has moved from a focus on observation of change and understanding the drivers of these changes to a focus on using this understanding to design sustainable transformations through stakeholder engagement and through the concept of land governance. As land use can be seen as the largest geo-engineering project in which mankind has engaged, land system science can act as a platform for integration of insights from different disciplines and for translation of knowledge into action

    The misleading narrative of the canonical faculty productivity trajectory.

    Get PDF
    A scientist may publish tens or hundreds of papers over a career, but these contributions are not evenly spaced in time. Sixty years of studies on career productivity patterns in a variety of fields suggest an intuitive and universal pattern: Productivity tends to rise rapidly to an early peak and then gradually declines. Here, we test the universality of this conventional narrative by analyzing the structures of individual faculty productivity time series, constructed from over 200,000 publications and matched with hiring data for 2,453 tenure-track faculty in all 205 PhD-granting computer science departments in the United States and Canada. Unlike prior studies, which considered only some faculty or some institutions, or lacked common career reference points, here we combine a large bibliographic dataset with comprehensive information on career transitions that covers an entire field of study. We show that the conventional narrative confidently describes only one-fifth of faculty, regardless of department prestige or researcher gender, and the remaining four-fifths of faculty exhibit a rich diversity of productivity patterns. To explain this diversity, we introduce a simple model of productivity trajectories and explore correlations between its parameters and researcher covariates, showing that departmental prestige predicts overall individual productivity and the timing of the transition from first- to last-author publications. These results demonstrate the unpredictability of productivity over time and open the door for new efforts to understand how environmental and individual factors shape scientific productivity

    LEF-1 drives aberrant β-catenin nuclear localization in myeloid leukemia cells

    Get PDF
    Canonical Wnt/β-catenin signaling is frequently dysregulated in myeloid leukemias and is implicated in leukemogenesis. Nuclear-localized β-catenin is indicative of active Wnt signaling and is frequently observed in acute myeloid leukemia patients; however, some patients exhibit little or no nuclear β-catenin even where cytosolic β-catenin is abundant. Control of the subcellular localization of β-catenin therefore represents an additional mechanism regulating Wnt signaling in hematopoietic cells. To investigate the factors mediating the nuclear-localization of β-catenin we carried out the first nuclear/cytoplasmic proteomic analysis of the β-catenin interactome in myeloid leukemia cells and identified putative novel β-catenin interactors. Comparison of interacting factors between Wnt-responsive cells (high nuclear β-catenin) versus Wnt-unresponsive cells (low nuclear β-catenin) suggested the transcriptional partner, LEF-1, could direct the nuclear-localization of β-catenin. The relative levels of nuclear LEF-1 and β-catenin were tightly correlated in both cell lines and in primary AML blasts. Furthermore, LEF-1 knockdown perturbed β-catenin nuclear-localization and transcriptional activation in Wnt-responsive cells. Conversely, LEF-1 overexpression was able to promote both nuclear-localization and β-catenin-dependent transcriptional responses in previously Wnt-unresponsive cells. This is the first β-catenin interactome study in hematopoietic cells and reveals LEF-1 as a mediator of nuclear β-catenin level human myeloid leukemia

    Hidden Charge Order in an Iron Oxide Square-Lattice Compound

    Get PDF
    Since the discovery of charge disproportionation in the FeO2 square-lattice compound Sr3Fe2O7 by Mössbauer spectroscopy more than fifty years ago, the spatial ordering pattern of the disproportionated charges has remained “hidden” to conventional diffraction probes, despite numerous x-ray and neutron scattering studies. We have used neutron Larmor diffraction and Fe K-edge resonant x-ray scattering to demonstrate checkerboard charge order in the FeO2 planes that vanishes at a sharp second-order phase transition upon heating above 332 K. Stacking disorder of the checkerboard pattern due to frustrated interlayer interactions broadens the corresponding superstructure reflections and greatly reduces their amplitude, thus explaining the difficulty of detecting them by conventional probes. We discuss the implications of these findings for research on “hidden order” in other materials

    Representations of sport in the revolutionary socialist press in Britain, 1988–2012

    Get PDF
    This paper considers how sport presents a dualism to those on the far left of the political spectrum. A long-standing, passionate debate has existed on the contradictory role played by sport, polarised between those who reject it as a bourgeois capitalist plague and those who argue for its reclamation and reformation. A case study is offered of a political party that has consistently used revolutionary Marxism as the basis for its activity and how this party, the largest in Britain, addresses sport in its publications. The study draws on empirical data to illustrate this debate by reporting findings from three socialist publications. When sport did feature it was often in relation to high profile sporting events with a critical tone adopted and typically focused on issues of commodification, exploitation and alienation of athletes and supporters. However, readers’ letters, printed in the same publications, revealed how this interpretation was not universally accepted, thus illustrating the contradictory nature of sport for those on the far left
    corecore